

ASSESSMENT OF THE USE OF INDUSTRIAL AND CONSTRUCTION BYPRODUCTS IN FULL-DEPTH RECLAMATION (FDR)

BASSO DOS SANTOS, Maicon, LACHANCE-TREMBLAY, Éric, LAMOTHE, Sébastien, CARRET, Jean-Claude École de technologie supérieure (ETS)

1. INTRODUCTION

The **circularity index** is :

- **3.5%** in **Quebec** [2];
- **6%** in **Canada** [3] *
- **8.6% Worldwide** [4] ; 3
- 24.5% in the Netherlands [5];

4. EXPERIMENTAL RESULTS

Proctor Test Results

Figure 1. Circular economy key mechanisms [1]

Full-Depth Reclamation (FDR)

There is a challenge and opportunity to improve this indicator in Quebec.

FDR is a pavement rehabilitation technique.

When compared to a new HMA, the use of FDR has less [6]:

(Fr **55.3%** global warming potential;

M 49% demands of fossil fuel;

48.8% of total primary energy.

Figure 2. FDR crushing, pulverizing, and blending [7]

Freeze-thaw cycle (FTC)

A FTC happens when air temperature decreases at the freeze water temperature, then

rises enough for it to thaw again.

1 – Water accumulate in porous;

<u>4</u>

- **2** Water freeze and expands, forcing cracks;
- **3** Ice thaws, and water go;
- **4** Repeated expansion and contraction cause further cracks until the aggregate split.

Figure 7. Compaction curves

- The highest density of the VA\RAP\SS mix might be related to the highest SS density;
- The increase in the RAP led to the highest percentage of optimum moisture content (OMC).

2. OBJECTIVES

Investigate the use of virgin aggregate (VA) reclaimed asphalt pavement (RAP), reclaimed concrete (RC) and steel slag (SS) in mechanical stabilization of full-depth reclamation (FDR) under normal conditions (soaked and unsoaked) and soaked FTC.

3. EXPERIMENTAL PROGRAM

Mix composition

60% VA \ 40% RAP: VA\RAP (Reference mix);

50% VA \ **35%** RAP \ **15%** SS: **VA\RAP\SS**;

45% VA \ 30% RAP \ 25% RC: VA\RAP\RC.

Material granulometry

Figure 5. Materials

Figure 8. CBR Results under different conditions and penetration rates

- There was an increase in CBR results of 64%, 145% and 50% in the unsoaked, soaked and FTC soaked condition, respectively, from the mix VA\RAP (Ref) to the mix VA\RAP\RC. Probably associate a cementitious process;
- From VA\RAP (Ref) to VA\RAP\SS this increase was 12% and 39% in the unsoaked and soaked, respectively. Presenting a **improvement** in **CBR** results due to de use of SS;
- From **unsoaked** to **soaked** and **FTC soaked** condition there was an average **increase** of **21%** and **16%**, respectively, in the VA\RAP\RC mix for both penetration rates, maybe associated with a **cementitious process**;
- In the VA\RAP\SS, from unsoaked to soaked condition the results were the same in **0.1**" penetration rate. On the other hand, a **decrease** of **2.1%** in **0.2**" when compared

Sieve Size (mm)

Figure 4. Granulometric distribution

• Testing

Modified Proctor Compaction Test (ASTM D1557 – 12);

Freezing and Thawing Compacted Samples (ASTM D560/D560M – 16);

California Bearing Ratio (**CBR**) (ASTM D1883 – 21).

Figure 6. CBR Test

REFERENCES

- [1] Institute EDDEC. (2018). Available at: https://rrecq.ca/en/the-circular-economy/the-circular-economy-in-short/. Accessed in: 30th August 2023
- [2] Recyc-Québec. (2022). Rapport sur l'indice de circularité de l'économie. Accessed in: 30th August 2023

[3] Normandin, D. (2021). A first estimate of the Canadian circularity rate. Available at: https://www.etsmtl.ca/en/news/2021/turning-point. Accessed in: 2nd November 2023

[4] Circle Economy. (2022). The circularity gap report. Available at: https://www.circularity-gap.world/2022.Accessed in: 30th August 2023

[5] Circle Economy. (2020). The circularity gap report. The Netherlands. Available at: https://www.circularity-gap.world/Netherlands. Accessed in: 17th October 2023. [6] He, S., Salem, O., & Salman, B. (2021). Decision Support Framework for Project-Level Pavement Maintenance and Rehabilitation through Integrating Life Cycle Cost Analysis and Life Cycle Assessment. Journal of Transportation Engineering, Part B: Pavements, 147(1), 04020083. https://doi.org/10.1061/jpeodx.0000239 [7] PCA. (2017). Guide to Full-Depth Reclamation (FDR) with Cement.

[8] Brahney, Kristina. (2021). What is the freeze-thaw cycle & how does it affect my parking lot?. Accessed in: 10th April 2024. Available at: https://www.fixasphalt.com/blog/what-is-the-freeze-thaw-cycle-how-does-it-affect-my-parking-lot

both conditions. On the other hand, there was average increase of 16.2% from the

unsoaked to **FTC soaked** condition in both penetration rate;

• There was a decrease of 19% in the results from unsoaked to soaked conditions in VA\RAP in both penetration rates. On the other hand, an average increase of 27.4% from the **unsoaked** to **FTC soaked**. These results demands more investigation.

5. CONCLUSIONS

- The mixtures VA\RAP\RC and VA\RAP\SS have presented better CBR results than VA\RAP (Reference mix);
- The **best performance** of all mixes tested is associated with VA/RAP/RC in **soaked** condition;
- The CBR results of the mix VA\RAP\SS was increased from the unsoaked to **soaked FTC** conditions;
- In VA\RAP (Ref) there was increase in the CBR results after soaked FTC that demands more investigation.